Computational semantics in type theory

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational semantics in type theory

This paper aims to show how Montague-style grammars can be completely formalized and thereby declaratively implemented by using the Grammatical Framework GF. The implementation covers the fundamental operations of Montague’s PTQ model: the construction of analysis trees, the linearization of trees into strings, and the interpretation of trees as logical formulas. Moreover, a parsing algorithm i...

متن کامل

Guarded Computational Type Theory

We develop a computational interpretation of guarded dependent type theory with clocks called CTT which enjoys a straightforward operational semantics and immediate canonicity result for base types. Our realizability-style presentation of guarded type theory is a computational and syntactic alternative to category-theoretic accounts of guarded recursion, emphasizing type theory’s role as the ul...

متن کامل

Computational type theory

Computational type theory provides answers to questions such as: What is a type? What is a natural number? How do we compute with types? How are types related to sets? Can types be elements of types? How are data types for numbers, lists, trees, graphs, etc. related to the corresponding notions in mathematics? What is a real number? Are the integers a subtype of the reals? Can we form the type ...

متن کامل

Programming language semantics in foundational type theory

languages --e.g., theoretical foundations, syntax, semantics, types, scope of Brief history of programming languages, Syntax, Semantics, Essentials, Paradigms Expression evaluation orders, Types, Recursion, Higher-order programming Programming Distributed Computing Systems: A Foundational Approach. type theory and the foundations of functional programming languages. Secondly, I would like to th...

متن کامل

Cartesian Cubical Computational Type Theory

We present a dependent type theory organized around a Cartesian notion of cubes (with faces, degeneracies, and diagonals), supporting both fibrant and non-fibrant types. The fibrant fragment includes Voevodsky’s univalence axiom and a circle type, while the non-fibrant fragment includes exact (strict) equality types satisfying equality reflection. Our type theory is defined by a semantics in cu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathématiques et sciences humaines

سال: 2004

ISSN: 0987-6936,1950-6821

DOI: 10.4000/msh.2925